Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The deep neural network (DNN) model for computer vision tasks (object detection and classification) is widely used in autonomous vehicles, such as driverless cars and unmanned aerial vehicles. However, DNN models are shown to be vulnerable to adversarial image perturbations. The generation of adversarial examples against inferences of DNNs has been actively studied recently. The generation typically relies on optimizations taking an entire image frame as the decision variable. Hence, given a new image, the computationally expensive optimization needs to start over as there is no learning between the independent optimizations. Very few approaches have been developed for attacking online image streams while taking into account the underlying physical dynamics of autonomous vehicles, their mission, and the environment. The article presents a multi-level reinforcement learning framework that can effectively generate adversarial perturbations to misguide autonomous vehicles’ missions. In the existing image attack methods against autonomous vehicles, optimization steps are repeated for every image frame. This framework removes the need for fully converged optimization at every frame. Using multi-level reinforcement learning, we integrate a state estimator and a generative adversarial network that generates the adversarial perturbations. Due to the reinforcement learning agent consisting of state estimator, actor, and critic that only uses image streams, the proposed framework can misguide the vehicle to increase the adversary’s reward without knowing the states of the vehicle and the environment. Simulation studies and a robot demonstration are provided to validate the proposed framework’s performance.more » « lessFree, publicly-accessible full text available March 24, 2026
-
Safe control designs for robotic systems remain challenging because of the difficulties of explicitly solving optimal control with nonlinear dynamics perturbed by stochastic noise. However, recent technological advances in computing devices enable online optimization or sampling-based methods to solve control problems. For example, Control Barrier Functions (CBFs) have been proposed to numerically solve convex optimization problems that ensure the control input to stay in the safe set. Model Predictive Path Integral (MPPI) control uses forward sampling of stochastic differential equations to solve optimal control problems online. Both control algorithms are widely used for nonlinear systems because they avoid calculating the derivatives of the nonlinear dynamic functions. In this paper, we use Stochastic Control Barrier Functions (SCBFs) constraints to limit sample regions in the samplingbased algorithm, ensuring safety in a probabilistic sense and improving sample efficiency with a stochastic differential equation. We also show that our algorithm needs fewer samples than the original MPPI algorithm does by providing a sampling complexity analysis.more » « less
-
We propose a reinforcement learning framework where an agent uses an internal nominal model for stochastic model predictive control (MPC) while compensating for a disturbance. Our work builds on the existing risk-aware optimal control with stochastic differential equations (SDEs) that aims to deal with such disturbance. However, the risk sensitivity and the noise strength of the nominal SDE in the riskaware optimal control are often heuristically chosen. In the proposed framework, the risk-taking policy determines the behavior of the MPC to be risk-seeking (exploration) or riskaverse (exploitation). Specifcally, we employ the risk-aware path integral control that can be implemented as a Monte-Carlo (MC) sampling with fast parallel simulations using a GPU. The MC sampling implementations of the MPC have been successful in robotic applications due to their real-time computation capability. The proposed framework that adapts the noise model and the risk sensitivity outperforms the standard model predictive path integmore » « less
-
Tarek Abdelzaher, Karl-Erik Arzen (Ed.)This article proposes a novel extension of the Simplex architecture with model switching and model learning to achieve safe velocity regulation of self-driving vehicles in dynamic and unforeseen environments. To guarantee the reliability of autonomous vehicles, an ℒ1adaptive controller that compensates for uncertainties and disturbances is employed by the Simplex architecture as a verified high-assurance controller (HAC) to tolerate concurrent software and physical failures. Meanwhile, the safe switching controller is incorporated into the HAC for safe velocity regulation in the dynamic (prepared) environments, through the integration of the traction control system and anti-lock braking system. Due to the high dependence of vehicle dynamics on the driving environments, the HAC leverages the finite-time model learning to timely learn and update the vehicle model for ℒ1adaptive controller, when any deviation from the safety envelope or the uncertainty measurement threshold occurs in the unforeseen driving environments. With the integration of ℒ1adaptive controller, safe switching controller and finite-time model learning, the vehicle’s angular and longitudinal velocities can asymptotically track the provided references in the dynamic and unforeseen driving environments, while the wheel slips are restricted to safety envelopes to prevent slipping and sliding. Finally, the effectiveness of the proposed Simplex architecture for safe velocity regulation is validated by the AutoRally platform.more » « less
-
null (Ed.)Road condition is an important environmental factor for autonomous vehicle control. A dramatic change in the road condition from the nominal status is a source of uncertainty that can lead to a system failure. Once the vehicle encounters an uncertain environment, such as hitting an ice patch, it is too late to reduce the speed, and the vehicle can lose control. To cope with unforeseen uncertainties in advance, we study a proactive robust adaptive control architecture for autonomous vehicles' lane-keeping control problems. The data center generates a prior environmental uncertainty estimate by combining weather forecasts and measurements from anonymous vehicles through a spatio-temporal filter. The prior estimate contributes to designing a robust heading controller and nominal longitudinal velocity for proactive adaptation to each new condition. The control parameters are updated based on posterior information fusion with on-board measurements.more » « less
An official website of the United States government
